IP-Kameras mit integrierter Videoanalyse

Fachartikel aus PROTECTOR 5/2010, S. 22

Filter und Forensik

Bosch Sicherheitssysteme hat die Software für die Videobildanalyse in IP-Kameras und Encodern optimiert und geht in der Entwicklung der integrierten Lösung mit der neuen Intelligenten Videobildanalyse (IVA) konsequent weiter.</p

Bild: Bosch Sicherheitssysteme
Neue Filter, Analyse auch gespeicherter Bilder und einfachere Konfiguration: eingebettete Videoanalyse in IP-Kameras und
Encodern. (Bild: Bosch Sicherheitssysteme)

So wurden verschiedene neue Filter (zum Beispiel Kopf-Erkennung, 3-Wire-Trap, Herumlungern, Geschwindigkeit, Routenverfolgung oder Farbdetektion) zur Erkennung verdächtigen Verhaltens implementiert. Auch ist eine Kombination von bis zu acht Filtern parallel möglich. Eine Besonderheit ist der neue Flowcontrol-Filter, der es ermöglicht, auch gegenläufige Objektbewegungen innerhalb von Objektgruppen (zum Beispiel Menschenmengen) zu erkennen.

Reduzierter Netzwerkverkehr

Dank der höheren Verarbeitungsleistung bieten die modernen IP-Videoencoder und -kameras deutlich mehr als ein einfaches IP-Videoencoding. Insbesondere die VCA-Software (IVMD und jetzt IVA), die hier dezentral im IP-Netzwerk eingesetzt wird, reduziert den Netzwerkverkehr zur Zentraltechnik erheblich, da Videodaten nur im Alarm- oder Ereignisfall übertragen oder gespeichert werden. Dieses ermöglicht eine sparsame Nutzung von Bandbreite (Netzwerklast) und Speicherplatz (Kosten).

Mit der neuen leistungsstarken VCA-Software (IVA 4.0) ist zudem ein großer Schritt in Richtung Forensik (nachträgliche Analyse von aufgezeichneten Videodaten) gelungen. Die neuen Farbfilterfunktionen erlauben es, die Objektfarbe oder sogar eine Kombination von Farben als Erkennungskriterium anzugeben. Realisiert wird dies durch ein Farbhistogramm, in dem Objektfarbe, Sättigung und Genauigkeit als Überwachungskriterien festgelegt werden können. Eine typische Anwendung ist zum Beispiel die Erkennung eines Fahrzeugs oder Personenbekleidung mit einer bestimmten Farbe oder Farbkombination.

Filtersatz erweitert

Der Filtersatz wurde um neue, leistungsfähige Funktionen, wie Linienquerungsalarme, Objektbewegungskurven und Spezifikationsfilterung ergänzt. Die Auslöser können so eingestellt werden, dass Alarme dann gesendet werden, wenn Objekte eine definierte Linie oder mehrere Linien überqueren oder ihre Geschwindigkeit (Laufen), Form (Hocken) oder Seitenverhältnisse (Fallen) ändern. Darüber hinaus unterstützt IVA 4.0 Ferninfrarot (FIR)-Thermokameras, die andere Einstellungen als bei herkömmliche Farbkameras erfordern.

Hervorzuheben beim IVA 4.0 sind seine leistungsfähigen forensischen Suchfunktionen, die in Form von Metadaten mit den Videobildern generiert und gespeichert werden. Die aufgezeichneten Metadaten, die aus einfachen Textzeichenfolgen mit Beschreibungen spezieller Bilddetails bestehen, haben ein wesentlich geringeres Datenvolumen und lassen sich schneller durchsuchen als die Videoaufzeichnungen selbst. Mit der optionalen Lizenz „Forensic Search“ für den Bosch Archivplayer können die Benutzer auf einfache Weise Suchabfragen definieren, die in Sekundenschnelle die gespeicherten Metadaten durchsuchen und so rasch relevante Videoszenen auffinden. Suchvorgänge, die manuell Tage oder gar Wochen dauern, können so in wenigen Sekunden ausgeführt werden. Hierbei werden Metadaten mit intelligenten Suchalgorithmen, ähnlich wie in einer Internet-Suchmaschine durchsucht. „Forensic Search“ erlaubt zudem die Festlegung von denselben Erkennungskriterien nach der Aufzeichnung wie bei den Analyse von Live-Videobildern.

Einfachere Konfiguration

Dank eines neuen benutzerfreundlichen Aufgabenmanagers mit Assistentenkonzept ist die Konfiguration jetzt schneller und einfacher durchzuführen. Aufgabenassistenten leiten den Bediener Schritt für Schritt durch die Erstellung von „Alarmregeln“ für jede überwachte Kamera.

Besonders nützlich ist die neue Konfigurationsoption für „Referenzobjekte“. Hierbei werden alle relevanten Objektdaten, wie Größe, Geschwindigkeit und Farbe in einer ausgewählten Live-Szene durch einen einzigen Mausklick auf das betreffende Objekt erfasst. Diese Informationen dienen dann als Überwachungskriterien zur späteren Verfolgung ähnlicher Objekte.

IVA 4.0 ist in den meisten IP-Kameras und Video-Encodern von Bosch eingebettet. Zur Aktivierung des Funktionsumfangs ist lediglich eine Lizenz erforderlich, sodass diese Funktion auch zu einem späteren Zeitpunkt aktiviert werden kann, ohne hierfür eine Platz-Ressource freizuhalten.

Weitere Informationen erhalten Sie bei Ihrem BOSCH Vertriebspartner:
ViSiTec Video-Sicherheit-Technik GmbH

IP in der Sicherheitstechnik

Fachartikel aus PROTECTOR Special Videoüberwachung 2009, S. 40 bis 43

Video ist nur der Anfang

Aus der Videoüberwachung sind IP-basierende Kameras und Lösungen heute nicht mehr wegzudenken. In vielen Anwendungen haben sie analoge Systeme bereits verdrängt. In anderen Bereichen dagegen hat sich das Standardprotokoll noch nicht im gleichen Maße durchsetzen können. Allerdings ist auch hier ein Trend zum Einsatz von IP und Ethernet zu erkennen.

Bild: Bosch
Bei Einbruch- und Brandmeldesystemen dient das IP-Protokoll immer häufiger für die Kommunikation der Meldezentralen mit dem übergeordneten Gebäudemanagementsystem. (Bild: Bosch)

Attraktiv sind Ethernet und IP für viele Unternehmen vor allem, weil sie den Aufbau separater Netzwerke für die Datenverarbeitung und die Sicherheitstechnik überflüssig machen können. Eine zentrale und einheitliche Verwaltung verspricht deutlich reduzierte Betriebskosten, und auch bei den Investitionen in die Infrastruktur führen die hohen Stückzahlen zu erheblichen Kostenvorteilen. Doch nicht nur finanziell zahlt sich der Einsatz standardisierter Netzwerktechnologien aus: Eines ihrer großen Versprechen ist die Schaffung einer gemeinsamen technischen Plattform für alle Bereiche der Sicherheitstechnik. Informationen von Videokameras, Brand- und Rauchmeldern oder Türsteuerungen können über einheitliche Protokolle, wie TCP/IP, und standardisierte Schnittstellen, wie OPC, zentral zusammengeführt werden. Ferner besteht so die Möglichkeit, mehrere Anwendungen auf einer gemeinsamen, flexiblen und konfigurierbaren Oberfläche anzuzeigen und miteinander zu verknüpfen. Zudem werden ganz neue Anwendungen durch die Digitalisierung überhaupt erst möglich.

Intelligenz in Kameras und Encodern

Dass „Security over IP“ heute häufig noch mit „Video over IP“ gleichgesetzt wird, hat nachvollziehbare Gründe, ist aber trotzdem falsch. Die Videoüberwachung ist heute allerdings der einzige Bereich der Sicherheitstechnik, in dem Ethernet und IP flächendeckend bis hin zum Sensor, nämlich der Videokamera, eingesetzt werden. Das ist nur deswegen möglich, weil Kameras vergleichsweise teure Systeme sind und die zusätzlichen Kosten für einen eigenen Prozessor und die notwendige Software dort nicht erheblich ins Gewicht fallen. Diesen geringen Zusatzkosten stehen jedoch erhebliche Kosteneinsparungen und andere Vorteile gegenüber.

Dank ihrer hohen Verarbeitungsleistung bieten moderne IP-Netzwerkkameras und -Encoder erheblich mehr als eine herkömmliche Videoübertragung. Insbesondere ermöglicht diese höhere Leistung den Aufbau dezentraler Videoarchitekturen mit intelligenten Funktionen direkt in den Encodern und Kameras. Bei diesem Ansatz werden alle „Ereignisse“ am Kamerastandort generiert und nur noch Videobilder von Interesse an die Leitstelle gesendet, was den Datenverkehr im Netzwerk deutlich reduziert. Dafür gibt es heute eine Vielzahl von Videolösungen, bei denen Festplatten direkt an die Kameras oder Encoder angeschlossen und als lokale Ringspeicher genutzt werden können.

Erheblich Kosteneinsparungen

Im Vergleich zu analogen Lösungen mit zentraler Videospeicherung bieten solche Systeme erheblich Kosteneinsparungen. Trotzdem geht der Trend bereits wieder weg von einfachen Netzwerkrecordern, denn der Einsatz von iSCSI-Laufwerken verspricht deutlich mehr Flexibilität und Zuverlässigkeit. So lassen sich mit iSCSI relativ einfach flexible Speichernetze mit Redundanz und einer automatischen Lastverteilung (Load Balancing) realisieren, so dass die Verfügbarkeit der Lösung jederzeit garantiert werden kann. iSCSI-basierende Speichersysteme sind zudem mittlerweile recht kostengünstig und lassen sich sehr einfach skalieren. Bedenkt man, dass die Speicherung von Videobildern nicht selten die Hälfte der Gesamtkosten für die Videoüberwachung ausmacht, sind dies starke Argumente für den Einsatz von iSCSI-Systemen.

Wenngleich IP heute in der Videoüberwachung als Standard gelten kann, gibt es doch noch einige Bereiche, in denen analoge CCTV-Technologien eingesetzt werden. Bei Spezialkameras, wie Dome- oder Infrarot-Kameras, spielt analoge Technik nach wie vor eine erhebliche Rolle – diese Systeme werden dann allerdings über entsprechende Decoder in das IP-Netzwerk integriert. Ähnlich sieht es in Bereichen mit harten Umgebungsbedingungen aus, in denen bei der digitalen Signalübertragung mit Störungen zu rechnen ist. Manche Unternehmen setzen auch im Außenbereich auf analoge Techniken, um einen physikalischen Zugang zu ihrem IP-Netz unmöglich zu machen. Allerdings gibt es hier auch andere Möglichkeiten, unbefugte Zugriffe wirkungsvoll zu verhindern, so dass sich IP-Kameras auch in der Außenhaut- und Freilandüberwachung zunehmend durchsetzen.

Auch Audio-Streams

Wurde IP in der Videoüberwachung zunächst nur für die Übertragung von Bildern eingesetzt, läuft heute auch der Audio-Stream immer häufiger über dieses Protokoll. Verbesserungen in der Netzwerktechnologie haben die Latency in den Bereich von 100 Millisekunden gedrückt, was für eine hochwertige Audioübertragung ausreichend ist (weswegen sich auch die Telefonie über das IP-Protokoll zunehmend durchsetzt). Qualitätsprobleme sind erst ab etwa 150 Millisekunden Latency zu erwarten. In modernen Gigabit-Netzen steht heute genügend Übertragungskapazität für Audio- und Videosignale zur Verfügung, zumal dieser Verkehr in virtuelle LANs (VLANs) separiert und dann mit einer hohen Priorität versehen werden kann. Dies erfolgt in der Regel über die Reservierung der notwendigen Bandbreite für den Videoverkehr in den Ethernet Switches. Solche Maßnahmen können vor allem dort erforderlich sein, wo die Videoüberwachung über das bestehende Datennetz betrieben wird und dieses bereits eine nennenswerte Auslastung aufweist.

Ein weiterer Vorteil der IP-Technologie ist die Tatsache, dass sie nicht zwangsläufig kabelgebunden ist. So lassen sich über WLANs relativ einfach auch Video- und Audio-Streams aus problematischen Umgebungen übertragen. Beispielsweise sind die Schleppkabel von Aufzugsanlagen in der Regel nicht für die Übertragung von Audio und Video ausgelegt – per WLAN lassen sich hier trotzdem zuverlässige und kostengünstige Überwachungs- und Notruflösungen realisieren.

Genauere Erkennung von Vorfällen

Der Trend weg von der analogen Videoüberwachung und hin zum vermehrten Einsatz von IP-gestützten Systemen hat auch eine Vielzahl von Lösungen für die intelligente Videoanalyse mit sich gebracht. Netzwerk-basierte Überwachung und intelligente Analyse ermöglichen zum einen eine deutlich genauere Erkennung von Vorfällen, da Konzentrationsmängel und andere menschliche Fehler von vornherein ausgeschlossen werden. Zum anderen machen sie das Sicherheitspersonal deutlich effizienter, da dieses nur noch auf generierte Alarme reagieren muss, statt ständig eine Vielzahl von Live-Bildern zu überwachen.

Bild: Bosch
Die Videoüberwachung ist heute der einzige Bereich der Sicherheitstechnik, in dem Ethernet und IP flächendeckend bis hin zum Sensor, nämlich der Videokamera, eingesetzt werden. (Bild: Bosch)

Waren die ersten intelligenten Systeme noch fast ausschließlich auf die Detektion von Bewegungen ausgelegt, gibt es heute wesentlich vielfältigere Alarmierungskriterien. Statt jede Bewegung zu melden, analysieren moderne Systeme auch die Größe des Objekts, seine Geschwindigkeit und seine Bewegungsrichtung und vermeiden so Fehlalarme wie bei der schon fast sprichwörtlichen Katze, die durch das Bild huscht. Interessant ist für viele Anwendungen auch eine Konfigurationsoption für Referenzobjekte. Hierbei werden alle relevanten Objektdaten, wie Größe, Geschwindigkeit und Farbe, in einer ausgewählten Live-Szene durch einen Mausklick auf das betreffende Objekt erfasst. Diese Informationen können dann als Überwachungskriterien zur späteren Verfolgung ähnlicher Objekte verwendet werden – auch über mehrere Kameras hinweg. So lässt sich beispielsweise sehr einfach erkennen, in welchen Bereichen des Firmengeländes sich eine verdächtige Person oder ein bestimmtes Fahrzeug bewegt hat.

Abstraktion durch Metadaten

Wenngleich bei vielen Anwendungen die zuverlässige Live-Alamierung im Vordergrund steht, ergibt sich doch oft die Notwendigkeit, Ereignisse später nachzuvollziehen. Eine Möglichkeit, diese Forensik deutlich zu beschleunigen, liegt in der Abstraktion. So können digitale Kameras neben dem eigentlichen Videobild auch Content-Analyse-Informationen in Form von Metadaten aufzeichnen. Diese bestehen aus einfachen Textzeichenfolgen mit Beschreibungen spezieller Bilddetails, wie Objekte oder Bewegungen. Die Metadaten haben ein wesentlich geringeres Volumen als die Videoaufzeichnungen selbst und lassen sich daher deutlich schneller und vor allem maschinell durchsuchen. Sie können zudem auch aus anderen Quellen wie etwa der Zutrittskontrolle stammen, so dass mit unterschiedlichen Techniken detektierte Ereignisse sehr einfach korreliert werden können.

IP jenseits von Video

Die Videoüberwachung hat dem IP-Protokoll den Zugang zur Sicherheitstechnik geebnet, doch der Einsatz digitaler Netzwerktechnologien ist schon lange nicht mehr auf Video beschränkt. Beobachter erwarten, dass die IP-Technologie schon bald auch den Markt für Zutrittskontrollsysteme beherrschen wird, da sie auch hier ihre Vorteile – Flexibilität, Standardisierung und geringe Kosten – voll ausspielen kann. Zwar ist nicht zu erwarten, dass die RS485-Schnittstellen der Terminals für die Zutrittskontrolle und die Zeitwirtschaft schon bald flächendeckend durch Ethernet ersetzt werden, doch verfügbar sind solche Systeme bereits. Allerdings sind IP-fähige Terminals wegen der erforderlichen Intelligenz noch spürbar teurer als ihre konventionellen Geschwister. Bei den Türkontrollern ist eine Ethernet-Schnittstelle für die Anbindung an die Zentrale dagegen heute Standard. Konfigurationsdaten für die einzelnen Terminals können so sehr einfach über das Netzwerk verteilt werden, und auch die Einbindung in ein zentrales Gebäudemanagement wird erheblich effizienter.

Ähnlich wie bei der Videoüberwachung ermöglicht auch die Digitalisierung der Zutrittskontrolle ganz neue Anwendungen, die einerseits die Sicherheit erhöhen und andererseits Kosten sparen können. So lassen sich viele digitale Zutrittskontrollsysteme über eine LDAP-Schnittstelle mit den gängigsten Verzeichnissystemen aus der EDV, wie etwa dem Active Directory, kombinieren, so dass die Zugangsrechte zur physischen und zur DV-Welt sehr effizient zentral verwaltet werden können.

Preissensitive Sensoren

Auch bei Einbruch- und Brandmeldesystemen dient das IP-Protokoll immer häufiger für die Kommunikation der Meldezentralen mit dem übergeordneten Gebäudemanagementsystem. Auf Sensorebene dagegen hat es sich bisher nicht durchsetzen können, da die Sensoren hier einfach und sehr preissensitiv sind. Zusätzliche Intelligenz wird nicht unbedingt benötigt, Extrakosten für eigene CPUs und die erforderliche Software sind daher in der Regel nicht zu rechtfertigen. Zudem stehen für den Anschluss der Melder an die Zentralen ausgereifte und kostengünstige Technologien, wie LSN (Lokales Sicherheitsnetzwerk), zur Verfügung, über die Ereignisse nicht nur gemeldet, sondern auch sehr genau lokalisiert werden können. Auch die für Hochsicherheitsanwendungen wie den Brandschutz notwendigen Zertifizierungen tragen dazu bei, dass IP sich dort auf der Sensorebene noch nicht durchsetzen konnte.

Bild: Bosch
Bisher existiert bei der Gefahrenmeldetechnik kein einheitlicher Standard. (Bild: Bosch)

Ein weiteres Problem ist die fehlende Standardisierung in der Kommunikation zwischen Geräten unterschiedlicher Hersteller. Während sich bei der Videotechnik mit Onvif eine Standardisierungsorganisation gebildet hat, der praktisch alle namhaften Hersteller, wie Axis, Bosch, Cisco, Panasonic, Sony und viele andere, angehören, ist die Welt in der Gefahrenmeldetechnik gespalten. Mit dem aus der Prozesstechnik stammenden OPC und dem in der Gebäudeleittechnik beheimateten Bacnet existieren hier zwei Standards, die allerdings beide auf TCP/IP als Transportmedium zurückgreifen können. Dennoch würde ein einheitlicher Standard für die Gerätekommunikation sicher auch die Akzeptanz eines Standard-Transportmediums, wie TCP/IP, fördern.

Sicherheitstechnik absichern

Betreibt man die Sicherheitstechnik über eine IT-Infrastruktur, muss man sich zwingend auch mit der Frage der IT-Sicherheit beschäftigen. Daten aus der Videoüberwachung oder der Brandmeldeanlage sind kritisch und/oder vertraulich; sie dürfen weder in falsche Hände gelangen noch der Gefahr der Manipulation ausgesetzt werden. In manchen Unternehmen kommt es daher vor, dass für die Sicherheitstechnik zwar IT-Technologien eingesetzt, aber trotzdem separate Netze aufgebaut werden. Der leitende Gedanke ist dabei, dass die Trennung von Sicherheits- und Datennetz einen erheblichen Sicherheitsgewinn bringt und auch der Performance beider Netze zugute kommt. Allerdings lassen sich eine solche Trennung und der damit verbundene Sicherheitsgewinn auch innerhalb eines physischen Netzes erreichen. Virtuelle LANs ermöglichen nicht nur garantierte Bandbreiten für die anspruchsvolle Videoübertragung, sondern auch das Management unterschiedlicher Berechtigungen für die einzelnen VLANs. Damit können logisch völlig separate Netze über eine einheitliche physische Infrastruktur realisiert werden.

Der logische Zugang zu dieser Infrastruktur wird dann mit den Mitteln der IT-Security abgesichert. So lassen sich über IEEE 802.1X nicht nur Personen authentifizieren, sondern auf Ebene von Ethernet-Ports auch einzelne Geräte. Damit kann ausgeschlossen werden, dass jemand an einem zugänglichen Port ein nicht zugelassenes Gerät in das Netzwerk integriert, etwa indem er den Anschluss einer Videokamera im Außenbereich „anzapft“. Unbefugtes Abhören von Daten lässt sich in IP-Umgebungen zudem recht einfach über Verschlüsselungstechniken verhindern.

IP heißt nicht IT

IP-basierte Architekturen ermöglichen heute auch in der Sicherheitstechnik sehr flexible und kostengünstige Lösungen, da viele Standard-Komponenten aus der Welt der Informationstechnik verwendet werden können. Trotzdem sollte die physische Sicherheit nicht lediglich als Teil der IT gesehen werden, da nach wie vor die sicherheitstechnische Erfahrung der Mitarbeiter in Planung, Einrichtung und Überwachung die Qualität und die Effizienz der Gesamtlösung bestimmen. Aus der Sicht der IT ist die physische Sicherheit nur eine weitere Applikation, die gewisse Anforderungen an das Netzwerk stellt. Für den Sicherheitsverantwortlichen dagegen ist die IT ein zunehmend wichtiger werdendes Werkzeug, ohne das er sein Handwerk nicht mehr beherrschen kann. Für ihn ist es daher essentiell, sich intensiv mit den neuen Technologien auseinander zu setzen – sonst übernimmt über kurz oder lang die IT-Abteilung nach der Telekommunikation auch die Sicherheitstechnik.

Christoph Hampe, Vertriebsreferent, Bosch Sicherheitssysteme GmbH

Weitere Informationen erhalten Sie bei Ihrem BOSCH Vertriebspartner:
ViSiTec Video-Sicherheit-Technik GmbH

HDTV in der IP-basierten Videoüberwachung

Fachartikel aus PROTECTOR Special Videoüberwachung 2010, S. 40 bis 43

Mehr als nur hochauflösend

HDTV ist heutzutage im Consumermarkt in aller Munde und gewinnt auch in der Welt der IP-basierenden Videoüberwachung zunehmend an Bedeutung. Erste HDTV-fähige Netzwerkkameras werden von verschiedenen Herstellern auf dem Markt angeboten, zudem gibt es auch immer mehr Videomanagement-Softwarelösungen, die HDTV-Bilder anzeigen und speichern können.

Bild: Axis
(Bild: Axis)

Doch was verbirgt sich genau hinter dem geläufigen Begriff HDTV und welche Vorteile ergeben sich durch HDTV in der IP-basierten Video- überwachung?

HDTV ist die Abkürzung für „High Definition Television“ und steht für ein hoch auflösendes Fernsehbild. Die HDTV-Nomenklatur setzt sich aus der Zeilenanzahl, dem Bildaufbauverfahren und der Bildrate zusammen. Als Zeilenanzahl kommen entweder 720 oder 1.080 Zeilen in Frage und als Bildaufbau- verfahren das Progressive Scan (p) oder Interlaced (i). HDTV bietet mögliche Bildraten von 24, 25, 30, 50 oder 60 Bildern/Sekunde. Gebräuchliche Varianten sind heute 720p, was einer Auflösung von 1.280 mal 720 Pixel entspricht oder 1080i beziehungsweise 1080p, die jeweils eine Auflösung von 1.920 mal 1.080 Pixel liefern. Alle drei Varianten werden heute in der Regel mit einer Bildrate von 25 oder 30 Bildern/Sekunde genutzt. 720p kommt im Consumermarkt für das Broadcasting von HDTV (TV @Home) zum Tragen und 1080i/p wird beispielsweise bei Blu-ray sowie Computer-Grafiken verwendet.

HDTV-Standards

Ein entscheidender Punkt in der HDTV-Technik sind die Standards der Society of Motion Picture and Television Engineers, abgekürzt SMPTE. Dieser Fachausschuss hat zwei wesentliche HDTV-Standards definiert: SMPTE 296M (entspricht der Definition von „720p”) und SMPTE 274M (für die Definition von „1080i” oder „1080p”). Diese Standards legen im Wesentlichen die Auflösung, das Seitenverhältnis, das Bildaufbau- verfahren, die Bildrate und den verwendeten Farbraum (Gamut) fest.

Wie zuvor beschrieben entspricht 720p einer Auflösung von 1.280 mal 720 Pixel und 1080i/p einer Auflösung von 1.920 mal 1.080 Pixel. Vergleicht man diese Auflösungen mit der 4CIF-Auflösung (704 mal 576 Pixel) nach dem im europäischen Raum verwendeten PAL-Verfahren, so entspricht 720p der 2,2-fachen Auflösung von 4CIF und 1080i/p der fünffachen Auflösung. Für die Videoüberwachung bietet die höhere Auflösung entweder die Möglichkeit, Bilder mit einer höheren Pixeldichte, also Detailhaltigkeit, abzurufen oder bei gleicher Pixeldichte mit einer Kamera einen größeren Bereich abzudecken.

Bildseitenverhältnis

Das Bildseitenverhältnis bei HDTV entspricht 16:9, anstelle des sonst genutzten Seitenverhältnis von 4:3. Letzteres ist historisch bedingt und wurde eingeführt, um die Produktionskosten von Bildröhren zu verringern, da man bei diesem Seitenverhältniss mit einer geringeren Materialdicke auskam. 4:3 entspricht nicht dem Sichtfeld des menschlichen Auges, was dazu führt, dass das menschliche Auge bei der Bildbetrachtung schneller ermüdet und wir dazu neigen, Details im unteren und oberen Bildbereich zu übersehen. Anders sieht es bei 16:9 aus: Dieses Seitenverhältnis entspricht mehr dem Sichtfeld des menschlichen Auges. Somit ist es für den Betrachter wesentlich angenehmer, und das Auge ermüdet weniger schnell bei der Bildbetrachtung. Gerade für Sicherheitsdienste, die oft lange Zeit vor den Überwachungsbildschirmen sitzen, ist das ein nicht zu unterschätzender Pluspunkt.

Als Bildaufbauverfahren kommt bei HDTV das Vollbildverfahren (Progressive Scan) zum Tragen oder das Zeilensprungverfahren (Interlaced). Letzteres kennt man von analogen Kameras. Es hat den Nachteil, dass bei Objekten, welche sich schnell an der Kamera vorbeibewegen, Kamm-Effekte (Interlaced-Problem) auftreten können. Diese werden durch den zeitlichen Versatz zwischen der Aufnahme der ungeraden Zeilen und der geraden Zeilen hervorgerufen. Für die Darstellung von bewegten Objekten sollte demnach bei HDTV auch vornehmlich das Vollbildverfahren zum Einsatz kommen. HDTV nutzt einen größeren Farbraum und bietet dadurch den Vorteil, dass HDTV- Aufnahmen sich durch eine bessere Farbdarstellung, beziehungsweise Farbtreue auszeichnen.

Bandbreitenbedarf

Stellt sich die Frage, wie sich die Vorteile von HDTV auf den Bandbreiten- und Speicherbedarf auswirken? 720p entspricht der 2,2-fachen Auflösung von 4CIF beziehungsweise der dreifachen Auflösung von VGA. 1080i/p entspricht der fünffachen Auflösung von 4CIF und der 6,75-fachen Auflösung von VGA. Für eine grobe Hochrechnung kann man den Faktor der Auflösungssteigerung nutzen, um den Bandbreiten- und Speicherbedarf von HDTV zu kalkulieren. Das bedeutet: Wenn man die fünffache Auflösung hat, dann benötigt man in etwa auch die fünffache Bandbreite und Speichervolumen. Messungen in der Praxis zeigen, dass eine Netzwerkkamera bei VGA-Auflösung mit 25 Bildern/Sekunde bei der Nutzung von Motion-JPEG (M-JPEG) eine durchschnittliche Bandbreite von 8,5 Megabit/Sekunde (MBit/s) benötigt, bei dem HDTV-Format 1080i 43,7 MBit/s. Arbeitet man mit MPEG-4 Part 2, so kommt man auf etwa vier MBit/s für Videos in VGA und zwölf MBit/s bei 1080i. Natürlich gehört MPEG-4 Part 2 zu den klassischen Videokompressionsverfahren, bei denen die resultierenden Bandbreiten in der Praxis immer von dem Anteil der Veränderungen im Bild abhängig sind. Diese Werte machen jedoch deutlich, dass der Durchbruch von HDTV nur in Verbindung mit effizienten Komprimierungsverfahren stehen kann.


Die Lösung des erhöhten Bandbreitenaufkommens liegt in der Verwendung von H.264 alias MPEG-4 Part 10 (auch als Advanced Video Coding, kurz AVC bezeichnet). H.264 zeichnet sich durch eine erhöhte Komprimierungseffizienz aus (siehe Tabelle 1), wodurch sich heute hochauflösende HDTV-Videos mit 25/30 Bildern/Sekunde bei Bandbreiten von durchschnittlich vier MBit/s übertragen lassen, die man bisher bei VGA- oder 4CIF-Videos unter MPEG-4 Part 2 kannte. Somit kann dank H.264 der erhöhte Bandbreitenbedarf von HDTV ausgeglichen werden.

Motion JPEG MPEG-4 P. 2* H.264*
Ø Kompressions- effizienz 1 Bit/Pixel 0,5 Bit/Pixel 0,2 Bit/Pixel
VGA-Video @ 25 B/s 8,5 MBit/s
(42 kByte/Bild)
4,25 MBit/s 1,7 MBit/s
720p-Video @ 25 B/s 26 MBit/s
(130 kByte/Bild)
3,8 MBit/s
1080i-Video @ 25 B/s 43,7 MBit/s
(218 kByte/Bild)
5,4 MBit/s

*Kompressionslevel 10 % und GOV-Länge 8 (bei H.264 und MPEG-4)
Tabelle 1: Kompressionseffizienz der verschiedenen Verfahren und Bandbreitenbedarf

Keine Kompromisse

Betrachtet man die Werte in Tabelle 1, so bietet H.264 im Vergleich zu MPEG-4 Part 2 bei einem Kompressionslevel von zehn Prozent etwa eine doppelt so hohe Kompressionseffizienz. Vergleicht man die Effizienz zu M-JPEG, macht der Unterschied bereits 80 Prozent aus. Die Werte aus der Praxis zeigen, dass man für eine VGA-Videosequenz mit 25 Bildern/Sekunde unter MPEG-4 Part 2 etwa 4,25 MBit/s benötigt und für ein HDTV-Video in 720p unter H.264 eine Bandbreite von 3,8 MBit/s (bei einem 1080i-Video mit 25 Bildern/Sekunde wären es 5,4 MBit/s). Somit bestätigt sich die Aussage, dass man dank H.264 für eine Videoübertragung in HDTV-Qualität in etwa dieselbe Bandbreite benötigt, wie bei einem VGA-Video unter MPEG-4 Part 2. Betrachtet man die Werte bei einem Kompressionslevel von 30 Prozent, so kommt man sogar für ein Video in 1080i in den Bereich der vier MBit/s. Diese Beispiele zeigen klar, dass man heute in der Lage ist, Videos in HDTV-Qualität zu übertragen und zu speichern, ohne dass man tatsächlich Kompromisse im Bandbreiten- oder Speicherbedarf eingehen muss.

Megapixel versus HDTV

Betrachtet man die HDTV-Auflösungen, so sind diese mit zwei Megapixel (1080i/p) und 0,9 Megapixel (720p) in die Liga der Megapixel-Auflösungen einzuordnen. Megapixelfähige Netzwerkkameras gibt es von verschiedenen Herstellern schon länger auf dem Markt und sind demnach nichts Neues. Betrachtet man jedoch diese Lösungen im Detail, so stellt man oft fest, dass teilweise die angebotenen Megapixel-Netzwerkkameras Videoströme mit Bildraten von gerade zwölf bis vier Bildern/Sekunde liefern können – im Vergleich zu den garantierten 25/30 Bildern/Sekunde bei HDTV-fähigen Netzwerkkameras. Der Begriff Megapixel entspricht keinem Standard und ist lediglich ein Synonym für die Anzahl der Pixel, die der Bildsensor beziehungsweise eine Netzwerkkamera liefert. Liegt die Pixelanzahl über der Schwelle von 1.000.000 Pixel, so spricht man von einer Megapixel-Auflösung.

Kamerahersteller neigen oft dazu, ihre Produkte mit dem Begriff „Megapixel“ zu schmücken, ohne auf die Kompromisse in der Bildrate hinzuweisen. Somit wird bei Megapixelkameras dem Käufer abverlangt, sich mit der tatsächlichen Performance der Kamera im Detail auseinanderzusetzen und die erzielbare Bildrate zu prüfen. Dasselbe gilt auch für das Prädikat HD, denn HD-fähige Netzwerkkameras versprechen lediglich die hochauflösende Bilddarstellung aber nicht die Bildrate von 25/30 Bildern/Sekunde. Man sollte also immer darauf achten, dass die Kameras auch die jeweiligen SMPTE-Standards unterstützen.

Vorteil HDTV

Geht man von den üblichen Kriterien für die Projektierung einer Videoüberwachungsanlage aus, die in der klassischen CCTV-Branche angewendet werden, so kann eine analoge Kamera mit einer Auflösung von 704 mal 576 Pixel lediglich eine Szene von 1,73 mal 1,41 Meter darstellen. Bei dieser Szene ergibt sich eine Pixeldichte von etwa vier Pixel pro Zentimeter, wobei dies der Anforderung für Personenidenti- fizierung entspricht, bei der eine Person mit 120 Prozent (1,4 Meter von einer 1,7 Meter großen Person) im Bild dargestellt wird. Verwendet man anstelle der analogen Kamera eine HDTV-fähige Netzwerkkamera mit 1080i/p, so kann man bei gleicher Pixeldichte einen Bereich von 4,71 mal 3,84 Metern abdecken.

HDTV bietet mehr Details durch höhere Aufl ösungen und das Seitenverhältnis von 16:9.

Erster Vorteil der ersichtlich ist, ist die Tatsache, dass die Person in der Höhe vollständig dargestellt werden kann. Des Weiteren lässt sich eine 2,7-fache Bildbreite darstellen, was zum Beispiel bei der Überwa- chung von einem Eingangsbereich eines Warenhauses vorteilhaft wäre. In diesem Fall lässt sich die Anzahl der benötigten Kameras reduzieren und ein wesentlich größerer Bereich abdecken.

Kritiker könnten natürlich fragen, warum man in einem Warenhaus die Szene mit einer Höhe von 3,84 Metern abdecken soll, wenn erwachsene Personen zwischen 1,60 und 1,95 Metern groß sind. Stellt man den Blickwinkel der HDTV-Netwzerkkamera so ein, dass dieser in der Höhe einen realistischen Bereich von 2,20 Metern abdeckt, ergibt sich bei dem Seitenverhältnis von 16:9 eine Breite von 3,91 Metern. Dies ergibt im Vergleich zur analogen Kamera mehr als die doppelte Breite und eine Pixeldichte von fünf Pixel pro Zentimeter, was einer Steigerung in der Detailhaltigkeit von mehr als 50 Prozent und in der Darstellungsbreite von 100 Prozent entspricht.


Es bietet sich natürlich auch an, die HDTV-Kameras so einzusetzen, dass die höhere Pixelanzahl ausschließlich für die Steigerung der Detailhaltigkeit genutzt wird. Dies wäre zum Beispiel in einem Spielcasino vorteilhaft, bei denen man so Manipulationsversuche besser dokumentieren kann. Hier ist zudem die garantierte Bildrate ein Vorteil, welche bei der Darstellung von Bewegungsabläufen wichtig ist. Des Weiteren ist die hohe Detailhaltigkeit bei Personenidentifizierungen entscheidend, welche auf biometrischen Softwarealgorithmen basieren.

Bild: Axis
HDTV bietet Vorteile bei Video- überwachungslösungen mit An- spruch auf hohe Detailhaltigkeit. (Bild: Axis)

PTZ-Dome-Netzwerkkameras

Immer mehr kommen PTZ-Dome-Netzwerkkameras auf den Markt, die ebenfalls Bilder in HDTV-Auflösung liefern. Diese Kameras überzeugen auf den ersten Blick schon alleine durch ihre brillante Bildqualität. Entscheidend ist hier allerdings auch der technische Vergleich zu den herkömmlichen PTZ-Dome-Kameras, welche mit der 4CIF-Auflösung arbeiten. Denn möchte man mit beiden Kameravarianten einen bestimmten Bereich aus der Ferne darstellen, so benötigt man bei der HDTV-fähigen Variante einen geringeren optischen Zoomfaktor als bei 4CIF. Das Öffnungsverhältnis (F-Zahl) eines Objektivs und die damit verbundene Lichtdurchlässigkeit ist immer von der Brennweite (Zoomfaktor) abhängig – je größer die Brennweite, desto geringer ist die Lichtdurchlässigkeit. Demnach bieten die HDTV-fähigen PTZ-Dome-Netzwerkkameras über den gesamten Zoombereich betrachtet eine bessere Lichtempfindlichkeit, was sich positiv in der Qualität der Bilddarstellung äußert.

HDTV in der Praxis

Natürlich besteht keine Notwendigkeit, einen Videostream von einer Kamera in HDTV-Auflösung abzurufen, um diesen im 5×5-Splittview mit 25 Live-Streams pro Monitor im Kleinbildformat auf den Bildschirm darzustellen. Jedoch ist es vorteilhaft, die Bildspeicherung im Hintergrund mit hochauflösenden HDTV-Bildern zu betreiben sowie im Alarmfall den vollen Bildschirm nutzen zu können und bei der Live-Bildbetrachtung auf die HDTV-Darstellung umschalten zu können. So sind für die spätere Auswertung im Bildspeicher Aufnahmen mit einer hohen Detailhaltigkeit verfügbar und ereignisabhängig auch für die Live-Bildbetrachtung. Für das Abrufen der Videostreams in unterschiedlichen Auflösungen und Bildraten bieten heutige Netzwerkkameras die so genannte Multi-Streaming-Funktionalität. Das heißt, die Videostreams können simultan in unterschiedlichen Auflösungen, Bildraten, Kompressionsraten und Komprimierungsverfah- ren von den Netzwerkkameras abgerufen werden.

Somit lassen sich Szenarien einrichten, bei denen beispielsweise die kontinuierliche Bildspeicherung von HDTV-Bildern via M-JPEG mit einem bis vier Bildern/Sekunde läuft und simultan für die Live-Bildbetrachtung im Splittview ein H.264-Video mit einer Auflösung von zum Beispiel 320 mal 180 Pixel mit 25 Bildern/Sekunde abgerufen wird. Für die Live-Bildbetrachtung wird dann unter H.264 ein HDTV-Stream abgerufen, sobald der Bediener auf eine größere Darstellung oder sogar auf den Vollbildmodus umschaltet. Das Abrufen des Videostreams in HDTV-Darstellung kann natürlich im Alarmfall auch automatisch über die Ereignissteuerung der Netzwerkkamera oder der Videomanagement-Software erfolgen. Auf diese Weise lassen sich IP-basierte Videoüberwachungseinrichtungen realisieren, die hochauflösende Videos zur Verfügung stellen und schonend in der Bandbreitenauslastung sind.

Vertretbare Bandbreiten

Betrachtet man den durchschnittlichen Bandbreitenbedarf anhand des zuvor genannten Beispiels im Detail (siehe Tabelle 2), so ergeben sich für einen Videokanal in Summe für den normalen Betriebsfall ein Bandbreitenbedarf von 3,95 MBit/s und im Alarmfall von 7,8 MBit/s. Diese Bandbreiten stellen in einer heutigen Netzwerk-Infrastruktur keine Herausforderung dar und sind für den praktischen Betrieb durchaus vertretbar. Kritiker neigen fälschlicherweise dazu, den Bandbreiten- bedarf zu hoch anzusetzen, indem sie die maximalen Bandbreiten auf die Anzahl der Videokanäle hochrechnen. Bei dem Beispiel ist jedoch zu berücksichtigen, dass man ja nicht gleichzeitig von der Live- Bildbetrachtung mehrerer Videokanäle ausgehen kann.

Tabelle 2: Beispielkalkulation für den Bandbreitenbedarf eines Videokanals mit hochauflösenden HDTV-Videos (Zum Vergrößern Lupe anklicken)

Heute gibt es bereits viele HDTV-fähige Netzwerkkameras auf dem Markt, die Videoströme in 720p, 1080i und/oder 1080p bei Bildraten von 25 oder 30 Bildern/Sekunde liefern können. Somit stehen heute im Vergleich zu einem 4CIF-Bild die 2,2-fache (720p) oder fünffache (1080i/p) Auflösung zur Verfügung, ohne dass Kompromisse in der Bildrate eingegangen werden müssen – vorausgesetzt, dass die verwendete Netzwerkkamera die jeweils relevanten SMPTE-Standards unterstützt und somit die Bildrate garantiert wird. Es ist zu erwarten, dass es zukünftig HDTV-fähige Netzwerkkameras geben wird, welche 1080p bei Bildraten von 50 oder 60 Bildern/Sekunde liefern, sodass voraussichtlich die nächste Qualitätssteigerung in der Reduzierung der Bewegungsunschärfe von sich schnell bewegenden Objekten liegen wird.

Jörg Rech, Technical Trainer & Consultant bei der Axis Communications GmbH

Weitere Informationen erhalten Sie bei Ihrem Axis Vertriebspartner:
ViSiTec Video-Sicherheit-Technik GmbH